Bayesian Shrinkage Methods for Partially Observed Data with Many Predictors.

نویسندگان

  • Philip S Boonstra
  • Bhramar Mukherjee
  • Jeremy Mg Taylor
چکیده

Motivated by the increasing use of and rapid changes in array technologies, we consider the prediction problem of fitting a linear regression relating a continuous outcome Y to a large number of covariates X , eg measurements from current, state-of-the-art technology. For most of the samples, only the outcome Y and surrogate covariates, W , are available. These surrogates may be data from prior studies using older technologies. Owing to the dimension of the problem and the large fraction of missing information, a critical issue is appropriate shrinkage of model parameters for an optimal bias-variance tradeoff. We discuss a variety of fully Bayesian and Empirical Bayes algorithms which account for uncertainty in the missing data and adaptively shrink parameter estimates for superior prediction. These methods are evaluated via a comprehensive simulation study. In addition, we apply our methods to a lung cancer dataset, predicting survival time (Y) using qRT-PCR ( X ) and microarray ( W ) measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Shrinkage Priors for Dynamic Regressions With Many Predictors

This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation. Using 129 U.S. macroeconomic quarterly variables for the period 1959 – 2010 I exhaustively evaluate the ...

متن کامل

Hierarchical Shrinkage in Time-Varying Parameter Models

In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. I...

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Generalized Shrinkage Methods for Forecasting Using Many Predictors

This article provides a simple shrinkage representation that describes the operational characteristics of various forecasting methods designed for a large number of orthogonal predictors (such as principal components). These methods include pretest methods, Bayesian model averaging, empirical Bayes, and bagging. We compare empirically forecasts from these methods with dynamic factor model (DFM)...

متن کامل

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The annals of applied statistics

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2013